
Functions in VB.NET
Kavita K. Bharti

Assistant Professor
Department of Computer

Durga Mahavidyalaya, Raipur

A procedure is a group of statements that together perform a task when called. After the
procedure is executed, the control returns to the statement calling the procedure. VB.Net has two
types of procedures −

 Functions
 Sub procedures or Subs

Functions return a value, whereas Subs do not return a value.

Defining a Function

The Function statement is used to declare the name, parameter and the body of a function. The
syntax for the Function statement is −

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Where,

 Modifiers − specify the access level of the function; possible values are: Public, Private,
Protected, Friend, Protected Friend and information regarding overloading, overriding,
sharing, and shadowing.

 FunctionName − indicates the name of the function
 ParameterList − specifies the list of the parameters
 ReturnType − specifies the data type of the variable the function returns

Following code snippet shows a function FindMax that takes two integer values and returns the
larger of the two.

Function Max(ByVal num1 As Integer, ByVal num2 As Integer) As Integer
 Dim result As Integer
 If (num1 > num2) Then
 result = num1
 Else
 result = num2

 End If
 Max = result
End Function

Function Returning a Value

In VB.Net, a function can return a value to the calling code in two ways −

 By using the return statement
 By assigning the value to the function name

The following example demonstrates using the FindMax function −

Module myfunctions
 Function Max(ByVal num1 As Integer, ByVal num2 As Integer) As Integer
 Dim result As Integer
 If (num1 > num2) Then
 result = num1
 Else
 result = num2
 End If
 FindMax = result
 End Function
 Sub Main()
 Dim a As Integer = 100
 Dim b As Integer = 200
 Dim res As Integer

 res = Max(a, b)
 Console.WriteLine("Max value is : {0}", res)
 Console.ReadLine()
 End Sub
End Module

When the above code is compiled and executed, it produces the following result −

Max value is : 200

Recursive Function

A function can call itself. This is known as recursion. Following is an example that calculates
factorial for a given number using a recursive function −

Module myfunctions
 Function factorial(ByVal num As Integer) As Integer
 Dim result As Integer
 If (num = 1) Then
 Return 1
 Else
 result = factorial(num - 1) * num
 Return result
 End If
 End Function
 Sub Main()
 'calling the factorial method
 Console.WriteLine("Factorial of 6 is : {0}", factorial(6))
 Console.WriteLine("Factorial of 7 is : {0}", factorial(7))
 Console.WriteLine("Factorial of 8 is : {0}", factorial(8))
 Console.ReadLine()
 End Sub
End Module

When the above code is compiled and executed, it produces the following result −

Factorial of 6 is: 720

Factorial of 7 is: 5040

Factorial of 8 is: 40320

